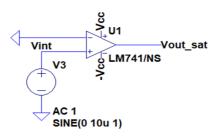

Bande passante d'un AO réel

- Un AO réel a un gain élevé A_0 mais qui diminue de -20dB/décade au delà d'une certaine fréquence de coupure f_0
- On définie le paramètre **GBW** (**Gain**·**Bandwidth**) comme étant le produit A_0 · f_0 .
- GBW est aussi la fréquence pour laquelle le gain est égale à 1 (0dB)

GBW est donné par le fabricants:

Ex: GBW (LM741) = 1 à .5 MHz et GBW (LM356) = 5MHz.

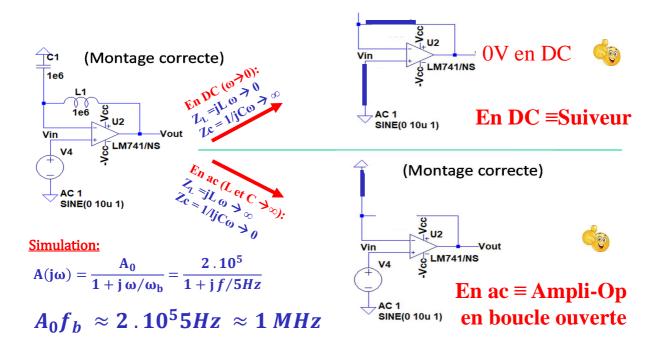

Electronique I - A. Koukab

1

Vérification par LTSPICE

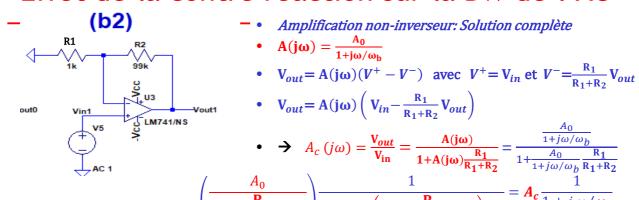
• Simulation de l'ampli en boucle ouverte c.à.d. sans contre réaction:

(Montage erroné)



- Problème: la sortie d'un Ampli-Op sature si elle reste flottante et donne donc des résultats erronés en AC.
- Solution: un montage fonctionnant simultanément en boucle fermée en DC (afin de polariser la sortie) et en boucle ouverte en AC (afin de simuler la réponse fréquentielle boucle ouverte).

Vérification par LTSPICE


(Montage correcte)

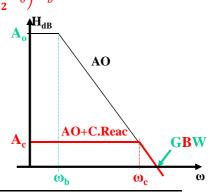
EPFL

Electronique I -A. Koukab

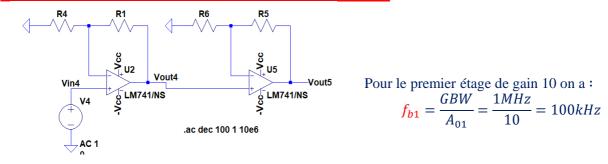
Effet de la contre réaction sur la BW de l'AO

•
$$A_c(j\omega) = \frac{V_{out}}{V_{in}} = \frac{A(j\omega)}{1 + A(j\omega)\frac{R_1}{R_1 + R_2}} = \frac{1 + j\omega/\omega_b}{1 + \frac{A_0}{1 + j\omega/\omega_b}\frac{R_1}{R_1 + R_2}}$$

$$\left(\frac{A_0}{1 + \frac{R_1}{R_1 + R_2}A_0}\right) \frac{1}{1 + j\omega/\left(1 + \frac{R_1}{R_1 + R_2}A_0\right)\omega_b} = A_c \frac{1}{1 + j\omega/\omega_c}$$
The filtre d'ordre 1.


→l'ampli Non-Inv = à un filtre d'ordre 1

de réponse $A_c(j\omega) = A_c \frac{1}{1+j\omega/\omega_c}$ avec


$$A_{c} = \frac{A_{0}}{1 + \frac{R_{1}}{R_{1} + R_{2}} A_{0}} \left\langle \frac{1}{A_{0} \to \infty} 1 + \frac{R_{2}}{R_{1}} = 100 \right\rangle$$

$$\omega_c = \left(1 + \frac{R_1}{R_1 + R_2} A_0\right) \omega_b \quad \langle \omega_c \approx 10 kHz \rangle$$

 $Rq: A_c f_c = A_0 f_b = GBW (= 1MHz)$

Mise en cascade de deux amplificateurs

- La fonction de transfert H(jf) de l'ampli à deux étages n'est autre que le produit des fonctions de transfert de chaque étage pris individuellement, c.à.d.
- $H(jf) = \left(\frac{10}{1 + jf/f_{b1}}\right)^2$
- D'où la bande passante totale f_{bt} correspondant à $(40-3dB \equiv \frac{100}{\sqrt{2}})$ donnée par:

•
$$|H(j\mathbf{f_{bt}})| = \left(\frac{10}{\sqrt{1 + (\mathbf{f_{bt}/f_{b1}})^2}}\right)^2 = \frac{100}{\sqrt{2}} \ (\equiv \ 37dB) \rightarrow 1 + (\mathbf{f_{bt}/f_{b1}})^2 = \sqrt{2}$$

• $\rightarrow f_{bt} = \sqrt{\sqrt{2} - 1} f_{b1} = 0.64 f_{b1} \approx 64 \text{ kHz}$

